Что такое питтинг и чем опасна точечная коррозия металла?

Словосочетания «коррозия металла» заключает в себе намного больше, чем название популярной рок-группы. Коррозия безвозвратно разрушает металл, превращая его в труху: из всего, произведенного в мире железа, 10% полностью разрушится в этот же год. Ситуация с российским металлом выглядит примерно так — весь металл, выплавленный за год в каждой шестой доменной печи нашей страны, становится ржавой трухой еще до конца года.

Выражение «обходится в копеечку» в отношении коррозии металла более чем верно — ежегодный ущерб, приносимый коррозией, составляет не менее 4% годового дохода любой развитой страны, а в России сумма ущерба исчисляется десятизначной цифрой. Так что же вызывает коррозийные процессы металлов и как с ними бороться?

Что такое коррозия металлов

Разрушение металлов в результате электрохимического (растворение во влагосодержащей воздушной или водной среде — электролите) или химического (образование соединений металлов с химическими агентами высокой агрессии) взаимодействия с внешней средой. Коррозийный процесс в металлах может развиться лишь в некоторых участках поверхности (местная коррозия), охватить всю поверхность (равномерная коррозия), или же разрушать металл по границам зерен (межкристаллитная коррозия).

Металл под воздействием кислорода и воды становится рыхлым светло-коричневым порошком, больше известным как ржавчина (Fе2O3·H2О).

Химическая коррозия

Этот процесс происходит в средах, не являющихся проводниками электрического тока (сухие газы, органические жидкости — нефтепродукты, спирты и др.), причем интенсивность коррозии возрастает с повышением температуры — в результате на поверхности металлов образуется оксидная пленка.

Химической коррозии подвержены абсолютно все металлы — и черные, и цветные. Активные цветные металлы (например — алюминий) под воздействием коррозии покрываются оксидной пленкой, препятствующей глубокому окислению и защищающей металл. А такой мало активный металл, как медь, под воздействием влаги воздуха приобретает зеленоватый налет — патину. Причем оксидная пленка защищает металл от коррозии не во всех случаях — только если кристаллохимическая структура образовавшейся пленки сообразна строению металла, в противном случае — пленка ничем не поможет.

Сплавы подвержены другому типу коррозии: некоторые элементы сплавов не окисляются, а восстанавливаются (например, в сочетании высокой температуры и давления в сталях происходит восстановление водородом карбидов), при этом сплавы полностью утрачивают необходимые характеристики.

Электрохимическая коррозия

Процесс электрохимической коррозии не нуждается в обязательном погружении металла в электролит — достаточно тонкой электролитической пленки на его поверхности (часто электролитические растворы пропитывают среду, окружающую металл (бетон, почву и т.д.)). Наиболее распространенной причиной электрохимической коррозии является повсеместное применение бытовой и технической солей (хлориды натрия и калия) для устранения льда и снега на дорогах в зимний период — особенно страдают автомашины и подземные коммуникации (по статистике, ежегодные потери в США от использования солей в зимний период составляют 2,5 млрд. долларов).

Происходит следующее: металлы (сплавы) утрачивают часть атомов (они переходят в электролитический раствор в виде ионов), электроны, замещающие утраченные атомы, заряжают металл отрицательным зарядом, в то время как электролит имеет положительный заряд. Образуется гальваническая пара: металл разрушается, постепенно все его частицы становятся частью раствора. Электрохимическую коррозию могут вызывать блуждающие токи, возникающие при утечке из электрической цепи части тока в водные растворы или в почву и оттуда — в конструкции из металла. В тех местах, где блуждающие токи выходят из металлоконструкций обратно в воду или в почву, происходит разрушение металлов. Особенно часто блуждающие токи возникают в местах движения наземного электротранспорта (например, трамваев и ж/д локомотивов на электрической тяге). Всего за год блуждающие токи силой в 1А способны растворить железа — 9,1 кг, цинка — 10,7 кг, свинца — 33,4 кг.

Другие причины коррозии металла

Развитию коррозийных процессов способствуют радиация, продукты жизнедеятельности микроорганизмов и бактерий. Коррозия, вызываемая морскими микроорганизмами, наносит ущерб днищам морских судов, а коррозийные процессы, вызванные бактериями, даже имеют собственное название — биокоррозия.

Совокупность воздействия механических напряжений и внешней среды многократно ускоряет коррозию металлов — снижается их термоустойчивость, повреждаются поверхностные оксидные пленки, а в тех местах, где появляются неоднородности и трещины, активируется электрохимическая коррозия.

Меры защиты металлов от коррозии

Неизбежными последствиями технического прогресса является загрязнение нашей среды обитания — процесс, ускоряющий коррозию металлов, поскольку внешняя окружающая среда проявляет к ним все большую агрессию. Каких-либо способов полностью исключить коррозийное разрушение металлов не существует, все, что можно сделать, это максимально замедлить этот процесс.

Для минимизации разрушения металлов можно сделать следующее: снизить агрессию среды, окружающей металлическое изделие; повысить устойчивость металла к коррозии; исключить взаимодействие между металлом и веществами из внешней среды, проявляющими агрессию.

Человечеством за тысячи лет испробованы многие способы защиты металлических изделий от химической коррозии, некоторые из них применяются по сей день: покрытие жиром или маслом, другими металлами, коррозирующими в меньшей степени (самый древний метод, которому уже более 2 тыс. лет — лужение (покрытие оловом)).

Антикоррозийная защита неметаллическими покрытиями

Неметаллические покрытия — краски (алкидные, масляные и эмали), лаки (синтетические, битумные и дегтевые) и полимеры образуют защитную пленку на поверхности металлов, исключающую (при своей целостности) контакт с внешней средой и влагой.

Применение красок и лаков выгодно тем, что наносить эти защитные покрытия можно непосредственно на монтажной и строительной площадке. Методы нанесения лакокрасочных материалов просты и поддаются механизации, восстановить поврежденные покрытия можно «на месте» — во время эксплуатации, эти материалы имеют сравнительно низкую стоимость и их расход на единицу площади невелик. Однако их эффективность зависит от соблюдения нескольких условий: соответствие климатическим условиям, в которых будет эксплуатироваться металлическая конструкция; необходимость применения исключительно качественных лакокрасочных материалов; неукоснительное следование технологии нанесения на металлические поверхности. Лакокрасочные материалы лучше всего наносить несколькими слоями — их количество обеспечит лучшую защиту от атмосферного воздействия на металлическую поверхность.

В роли защитных покрытий от коррозии могут выступать полимеры — эпоксидные смолы и полистирол, поливинилхлорид и полиэтилен. В строительных работах закладные детали из железобетона покрываются обмазками из смеси цемента и перхлорвинила, цемента и полистирола.

Защита железа от коррозии покрытиями из других металлов

Существует два типа металлических покрытий-ингибиторов — протекторные (покрытия цинком, алюминием и кадмием) и коррозионностойкие (покрытия серебром, медью, никелем, хромом и свинцом). Ингибиторы наносятся химическим способом: первая группа металлов имеет большую электроотрицательность по отношению к железу, вторая — большую электроположительность. Наибольшее распространение в нашем обиходе получили металлические покрытия железа оловом (белая жесть, из нее производят консервные банки) и цинком (оцинкованное железо — кровельное покрытие), получаемые путем протягивания листового железа через расплав одного из этих металлов.

Часто цинкованию подвергаются чугунная и стальная арматура, а также водопроводные трубы — эта операция существенно повышает их стойкость к коррозии, но только в холодной воде (при проводе горячей воды оцинкованные трубы изнашиваются быстрее неоцинкованных). Несмотря на эффективность цинкования, оно не дает идеальной защиты — цинковое покрытие часто содержит трещины, для устранения которых требуется предварительное никелерование металлических поверхностей (покрытие никелем). Цинковые покрытия не позволяют наносить на них лакокрасочные материалы — нет устойчивого покрытия.

Лучшее решение для антикоррозийной защиты — алюминиевое покрытие. Этот металл имеет меньший удельный вес, а значит — меньше расходуется, алюминированные поверхности можно окрашивать и слой лакокрасочного покрытия будет устойчив. Кроме того, алюминиевое покрытие по сравнению с оцинкованным покрытием обладает большей стойкостью в агрессивных средах. Алюминирование слабо распространено из-за сложности нанесения этого покрытия на металлический лист — алюминий в расплавленном состоянии проявляет высокую агрессию к другим металлам (по этой причине расплав алюминия нельзя содержать в стальной ванне). Возможно, эта проблема будет полностью решена в самое ближайшее время — оригинальный способ выполнения алюминирования найден российскими учеными. Суть разработки заключается в том, чтобы не погружать стальной лист в расплав алюминия, а поднять жидкий алюминий к стальному листу.

Повышение коррозийной стойкости путем добавления в стальные сплавы легирующих добавок

Введение в стальной сплав хрома, титана, марганца, никеля и меди позволяет получить легированную сталь с высокими антикоррозийными свойствами. Особенную стойкость стальному сплаву придает большая доля хрома, благодаря которому на поверхности конструкций образуется оксидная пленка большой плотности. Введение в состав низколегированных и углеродистых сталей меди (от 0,2% до 0,5%) позволяет повысить их коррозийную устойчивость в 1,5-2 раза. Легирующие добавки вводятся в состав стали с соблюдением правила Таммана: высокая коррозийная устойчивость достигается, когда на восемь атомов железа приходится один атом легирующего металла.

Меры противодействия электрохимической коррозии

Для ее снижения необходимо понизить коррозийную активность среды посредством введения неметаллических ингибиторов и уменьшить количество компонентов, способных начать электрохимическую реакцию. Таким способом будет понижение кислотности почв и водных растворов, контактирующих с металлами. Для снижения коррозии железа (его сплавов), а также латуни, меди, свинца и цинка из водных растворов необходимо удалить диоксид углерода и кислород. В электроэнергетической отрасли проводится удаление из воды хлоридов, способных повлиять на локальную коррозию. С помощью известкования почвы можно снизить ее кислотность.

Защита от блуждающих токов

Снизить электрокоррозию подземных коммуникаций и заглубленных металлоконструкций возможно при соблюдении нескольких правил:

  • участок конструкции, служащий источником блуждающего тока, необходимо соединить металлическим проводником с рельсом трамвайной дороги;
  • трассы теплосетей должны размещаться на максимальном удалении от рельсовых дорог, по которым передвигается электротранспорт, свести к минимуму число их пересечений;
  • применение электроизоляционных трубных опор для повышения переходного сопротивления между грунтом и трубопроводами;
  • на вводах к объектам (потенциальным источникам блуждающих токов) необходима установка изолирующих фланцев;
  • на фланцевой арматуре и сальниковых компенсаторах устанавливать токопроводящие продольные перемычки — для наращивания продольной электропроводимости на защищаемом отрезке трубопроводов;
  • чтобы выровнять потенциалы трубопроводов, расположенных параллельно, необходимо установить поперечные электроперемычки на смежных участках.

Защита металлических объектов, снабженных изоляцией, а также стальных конструкций небольшого размера выполняется с помощью протектора, выполняющего функцию анода. Материалом для протектора служит один из активных металлов (цинк, магний, алюминий и их сплавы) — он принимает на себя большую часть электрохимической коррозии, разрушаясь и сохраняя главную конструкцию. Один анод из магния, к примеру, обеспечивает защиту 8 км трубопровода.

© Абдюжанов Рустам, специально для рмнт.ру

18.03.10

Внешнее проявление питтинговой коррозии

Существуют различные формы разрушения металлов. Точечная коррозия или питтинг – одна из этих форм, представляющая собой местные (локальные) дефекты на поверхности металла. Чаще всего питтинговая коррозия встречается на нержавеющей стали, алюминии и его сплавах, титане, никеле и возникает, когда пассивное состояние материала частично нарушается.

Питтинг довольно опасен для металла, несмотря на маленькие размеры его проявлений. Остальная поверхность продолжает оставаться в нормальном внешнем состоянии, и только в некоторых местах появляются белые или рыжеватые мелкие точки, язвочки, небольшие полоски. Их облик обманчив, и глубина обычно оказывается значительной, при этом пользователь редко обращает на них внимание на ранней стадии развития.

Крошечные сквозные отверстия – признак сквозной коррозии

По мере того, как медные трубы стареют, в них часто появляются крошечные сквозные отверстия – признак сквозной коррозии. Однако, основная причина их появления не просто возраст труб, как мы увидим ниже.

К несчастью, протечки от точечной коррозии в медных трубах обычно происходят в местах, где эти трубы не обследовались и не обслуживались, пока не произошло затопление от этих труб или заражение помещения плесенью. Сантехники обычно имеют множество различных объяснений возникновения этих протечек, но мы ограничимся в этой статье несколькими самыми распространенными.

Три самых распространенных причины – это превышенное количество хлоридов в воде, частички коррозии от старого водонагревателя и высокое давление воды в трубах.

Причины, инициирующие питтинг

Часто предпосылкой для появления точечной коррозии становится нарушение технологии производства металла. Например, при несоблюдении правил отливки в стали появляются микропримеси, включения, изменяющие нормальную структуру. Некачественный металл может быть слишком пористым либо в нем появляется остаточная окалина – это тоже способствует возникновению питтинга.

Также питтинг возникает при эксплуатации стали, иных металлов в агрессивной среде: растворах, содержащих окислители и активирующие анионы (соляная, азотная кислоты, морская вода, хлористые соединения).

Прочие причины образования точечной коррозии таковы:

  • механическое воздействие, приводящее к появлению сколов, царапин и вызывающее повреждение внешней защитной пленки;
  • излишнее внутреннее напряжение металла;
  • эксплуатация изделия при высоких температурах.

На шероховатой нержавейке точечная коррозия появится с большей вероятностью, чем на гладкой, отполированной, поэтому неровная текстура поверхности тоже считается фактором риска.

Условия возникновения и распространения точечной коррозии

На распространение питтинга влияют:

  • Концентрация и природа ионов, присутствующих в растворе;
  • Характер катодного процесса.

Визуально вы можете видеть области без точек (катодные области), которые питают анодные реакции питтинга в процессе развития. После образования питтинг развивается с автостимолантным эффектом. Процесс аккреции может придать питтингу разные и непредсказуемые морфологические аспекты. Точечная коррозия может следовать направлению силы тяжести с вертикальным ростом или иметь тенденцию избегать механически очень устойчивых поверхностей (закаленных).

После появления точечной коррозии скорость коррозии достигает очень высоких значений, что приводит к ухудшению качества изделия за короткое время. Может случиться, что питтинг не продолжит свое проникающее действие: в случае, если нет необходимых условий для его роста, не образуется питтинг большей активности, который будет поглощать весь ток, подаваемый из области, окружающей катод. На скорость развития точечной коррозии очень сильно влияет восстановление ионов металлов по отношению к воздействию кислорода, которое ограничено растворимостью в растворе и диффузионными параметрами.

В основном, на процесс точечной коррозии очень влияют:

  • Температура;
  • Концентрация специфических ионов (Cl-)
    – чем выше концентрация этих ионов, тем интенсивность точечной коррозии становится более выраженной. Насыщенные растворы хлора определяют уменьшение процесса точечной коррозии, поскольку триггерные точки быстро размножаются, а затем коррозия приобретает общий вид с низкой скоростью проникновения. В этих условиях процесс точечной коррозии также останавливается после снижения растворимости кислорода, что недостаточно стимулирует анодное действие хлоридов, которые в этой ситуации имеют очень высокие скорости. Морская вода с процентным содержанием соли, равным 3%, представляет собой оптимальные условия для коррозии;
  • рН раствор;
  • Продукты коррозии
    – они нерастворимы и могут вызывать другие процессы локальной коррозии (щелевая коррозия);
  • Наличие ионов кислорода
    – их присутствие препятствует точечной коррозии;
  • Заусенцы, шероховатость поверхности, геометрические факторы;
  • Металлографические факторы
    – мартенситные и ферритные структуры более благоприятны для точечной коррозии, чем аустенитные структуры, которые содержат в себе такие вещества, как молибден, хром, никель, которые снижают подверженность коррозии.

Процесс распространения обусловлен созданием гальванической пары, представленной на рисунке ниже.

Учитывая активно-пассивное поведение металла в растворе хлорида натрия (NaCl, морская вода), катодная реакция протекает по всей поверхности металла с образованием ионов ОН-, которые образуют больше катодных поверхностей вне питтинга. Анодная реакция растворения металла происходит внутри точки с образованием ионов металла и развитием диффузионных явлений, которые приводят к постепенному обогащению ионов хлора. Действие ионов хлоридов и повышение кислотности (развитие ионов Н+) обеспечивают состояние активности металла внутри полости; одновременно, образование продуктов коррозии, которые благодаря их более высокому удельному весу способствуют процессу коррозии в вертикальном направлении, увеличивая проникающую способность процесса.

Особенности и схема развития питтинговой коррозии

Питтинг отличается высокой скоростью протекания. Если вовремя не избавиться от мелких дефектов, изделие может проржаветь насквозь. Чем выше температура в месте нахождения металла, тем быстрее будет идти его ржавление.

Питтинговая коррозия развивается в три этапа:

  1. Первый этап – зарождение. Обычно случается в зонах с нарушенной защитой, где пассивная пленка на поверхности металла была разорвана, либо там, где имеет место неоднородность материала. После вытеснения кислорода ионами-активаторами оксидный слой разрушается.
  2. Второй – рост питтинга. Он подчиняется законам электрохимических реакций. Вследствие растворения оксидной пленки усиливается анодный процесс в месте точечной коррозии, при этом нормальная поверхность становится катодом.
  3. Третий – диффузное расширение. На этой стадии элемент коррозии продвигается вглубь, рядом могут формироваться новые точки ржавчины.

В некоторых случаях питтинг останавливается в развитии на второй стадии и переходит на этап репассивации. Это случается при сдвиге реакции в сторону пассивации, например, при изменении кислотности среды. Если точечная коррозия перетекла на стадию диффузного роста, она не уже может войти в репассивацию.

Что такое питтинг

Итак, питтинг является разновидностью коррозии, при которой на металлической поверхности будут появляться так называемые питтинги. Такая коррозия будет затрагивать медные, железные, алюминиевые сплавы, а также те, что на основе хрома и прочие. Коррозия питтингового типа возможна даже на нержавейке.

Питтинг обычно будет затрагивать разные металлические конструкции, которые будут контактировать с соленой водой (как правило, это разные участки около берега). Это связано с тем, что для вступления в силу реакции требуется избыток ионов-активаторов, которые станут вытеснять кислород из защитной оксидной пленки – а такие вещества в большом количестве выделяются именно в воде. Также обращайте внимание, что вначале питтинг обычно начинает затрагивать верхние слои оксидной пленки, но из-за усиливающегося распространения ржавчины он может начать захватывать металл полностью. Такая коррозия появляется обычно при комбинации сразу двух факторов.

Форма питтингов

По фото можно увидеть, что некоторые элементы имеют правильную форму, другие неправильные по внешнему виду. Точная форма зависит от пустот в кристаллической решетке, которые сформировались во время зарождения питтинга. Обычно на простой (углеродистой), низколегированной стали и нержавейке образуются неправильные точечные коррозии, а на алюминии, различных сплавах – правильные. Кроме того, классификация питтингов по форме выглядит так:

  • полусферические, с блестящим, полированным дном;
  • полиэдрические;
  • ограненные, в том числе, соединяющиеся между собой;
  • в виде сложных многогранников;
  • пирамидальные;
  • призматические.

Полированные (полусферические) элементы нередко находятся на алюминии, тантале и титане, а также на кобальтовых, никелевых сплавах.

Классификация питтинга

Точечная коррозия классифицируется не только по форме, но и по иным признакам: размеру, специфике своего развития.

По размерам

В зависимости от точного состава металла, окружающих условий (температуры, кислотности) размеры питтинговой коррозии могут быть разными:

  • микроскопические (микропиттинг) – менее 0,1 мм;
  • обычные (питтинг) – 0,1-1 мм;
  • значительные (язва) – более 1 мм.

По специфике развития

Питтинг бывает поверхностным, открытым и закрытым. Поверхностные элементы коррозии интенсивно развиваются по горизонтали, не захватывая более глубокие структуры металла. Они вызывают появление хорошо заметных выбоин малой глубины. Открытая точечная коррозия видна невооруженным глазом либо при небольшом размере при увеличении стандартным оптическим оборудованием. Этот тип ржавления нередко переходит в сплошной, если на поверхности стали появляться много питтингов.

Закрытая коррозия считается самой опасной в плане дальнейшей сохранности металлических изделий. Рассмотреть ее без приборов невозможно, поэтому элементы увеличиваются вглубь металла, оставаясь незамеченными в течение длительного времени. Именно закрытые питтинги вызывают формирование пробоин. Если вовремя не убрать начальные проявления коррозии, изделие придет в негодность.

Питтинг

Растворенный кислород обычно способствует пассивации нержавеющей стали за исключением случаев, когда происходит питтинговая коррозия (при наличии в среде хлоридов и бромидов. Этот очень распространенный и очень опасный вид коррозии приводит к образованию сквозных изъязвлений, которые могут быть почти невидимы на поверхности. Вероятность питтинговой коррозии нержавеющей стали под действием растворов, содержащих хлориды, возрастает с увеличением количества воздуха в растворе. Молибденсодержащие нержавеющие стали с высоким содержанием хрома и низким содержанием углерода (например, Z2CND13) относительно стойки к этому виду коррозии.

Общие закономерности возникновения питтинговой коррозии трудно установить, так как они зависят от многих факторов: pH среды, концентрации кислорода, температуры, солесодержа-ния, количества взвешенных веществ и т. д. В некоторых случаях для предотвращения питтинговой коррозии могут быть применены высокосортные сплавы, такие как уранус (Uranus).

Способы защиты от питтинга

Существует ряд современных методов предотвращения коррозии, и многие из них применяются уже на стадии производства авто. Тем не менее, старые машины вследствие долгой эксплуатации, постоянного контакта с агрессивными реагентами подвержены ржавлению. Питтинг нередко возникает на различных деталях автомобиля: подшипниках, зубьях шестерен, а точки ржавчины на кузове и вовсе считаются распространенным явлением.

Точечная коррозия зачастую выявляется и на бытовых предметах, в том числе из нержавеющей стали. Для защиты металла можно применять механические и химические методики, некоторые из них подходят для самостоятельного использования.

Механический способ

Данный метод включает советы по удалению уже имеющейся ржавчины при помощи шлифования, лазерной обработки, а также механическое нанесение барьерных покрытий (в том числе лакокрасочных). Выбор вида покрытия зависит от типа металла и условий его эксплуатации. Обычно используется техника цинкования или никелирования, но в промышленных условиях также практикуется хромирование, покрытие медью, серебром, алюминием, оловом, кадмием. Созданная пленка изолирует металл от окружающей среды и не дает ему контактировать с кислотами, кислородом, хлором, чем продлевает срок службы.

В продаже есть наборы для самостоятельного проведения цинкования металла. Вначале производят очистку детали от уже имеющейся ржавчины путем обработки преобразователями. Через полчаса средства смывают, изделие чистят, полируют, наносят слой специального раствора и подключают электрод с цинковым наконечником. По истечении определенного времени на поверхности металла будет создана тонкая цинковая пленка, которая не позволит ржавчине и дальше разрушать материал.

Химический способ

Основным химическим методом избавления от коррозии является ликвидация замкнутой системы растворами щелочей, сульфатов, хроматов. Принцип действия заключается в уменьшении кислотности и сдвиге реакции в сторону щелочной, в которой процессы коррозии останавливаются. Важно только контролировать выделение водорода, поскольку этот элемент сам по себе увеличивает риск появления питтингов.

К сожалению, в быту полностью устранить опасность развития точечной коррозии невозможно. Есть шанс лишь ослабить влияние факторов риска. Лучше сразу правильно эксплуатировать изделие, не допускать повышения кислотности среды, чем можно продлить срок его службы на несколько лет.

Несмотря на многообразие форм проявления коррозионных про­цессов на металлических материалах, существует классификация, позволяющая более или менее четко относить каждое из наблюдае­мых на практике коррозионных поражений к определенному классу. В один класс выделены так называемые локальные коррозионные процессы, общей чертой которых является то, что все они протека­ют на сравнительно небольших по площади участках поверхности металла и развиваются с крайне высокой скоростью. В результате происходит быстрая потеря металлическими конструкциями эксплу­атационных свойств из-за разрушения их сравнительно небольших участков. Повышенная опасность локальных коррозионных процес­сов связана с тем, что из-за малых размеров пораженных ими пло­щадей поверхности и высоких скоростей растворения металла в них существование самого очага зачастую обнаруживается только в момент выхода оборудования из строя. Постоянное ужесточение условий эксплуатации металлического оборудования и вовлечение в промышленную сферу все новых металлических конструкционных материалов приводит к тому, что с течением времени доля локальных коррозионных поражений неуклонно возрастает.

К основным видам локальной коррозии относится питтинговая, язвенная, щелевая, межкристаллитная, селективное вытравливание и контактная коррозия.

Питтинговая коррозия(ПК) является одним из наиболее опас­ных видов локальной коррозии. Ей подвержены многие пассивиру­ющиеся металлы и сплавы.

К питтинговой коррозии склонно подавляющее большинство ме­таллов (Fе, Ni, Со, Мп, Сг ,Т1, А1, Мs, Zг, , Та, Си, Zп и др.) и конструкционных материалов на их основе. Питтинговая коррозия возникает в морской воде, растворах солей, в охлаждающих системах холодильных машин, в системах оборотного водоснабжения химиче­ских предприятий. Термин «питтинг» применяют для описания как точечной коррозии, так и специфических коррозионных поражений . Название питтинг обычно используют применительно к глубоким точечным поражениям.

В зависимости от условий формирования и развития (темпера­тура, кислотность

Часто крупные (полусферические) питтинги возникают в резуль­тате слияния множества более мелких кристаллографических

Для протекания питтинговой коррозии необходимо выполнение ряда условий:

• питтинг образуется на поверхности металлов, находящихся в пассивном состоянии

• развитию питтинга способствуют дефекты пассивирующей пленки (структурные неоднородности, посторонние включе­ния, поры). Особенно уязвимы для питтинга ребра, риски, границы лакокрасочных покрытий;

• в растворе должны одновременно присутствовать активаторы питтинговой коррозии и пассиваторы металла.

Стимуляторами питтинговой коррозии металлов в водных сре­дах являются ионы С1-, Вг-, I- Анионы-активаторы в тех или иных количествах присутствуют в подавляющем большин­стве природных и технологических сред, в которых эксплуатируется металлическое оборудование и конструкции.

Относительная эффективность действия анионов-активаторов располагается в ряду С1~ > Вг~ > .

Язвенная коррозияпо характеру своего развития очень напомина­ет ПК, однако локализация коррозионного процесса при этом менее острая, и диаметр очагов язвенной коррозии гораздо больше, чем при ПК. Диаметр язв, как правило, существенно больше их глубины. Язвенная коррозия протекает как на пассивных, так и на активно растворяющихся металлах. Повышенной склонностью к язвенной коррозии обладают углеродистые и низколегированные стали.

Язвенная коррозия, как правило, протекает на поверхности актив­но растворяющихся металлов (в некоторых случаях коррозионные язвы могут образовываться и при слиянии питтингов, растущих на пассивном металле) и по характеру своего развития напоминает питтинговую коррозию, вследствие чего четкая квалификация локально­го коррозионного процесса часто бывает затруднена. Склонностью к язвенной коррозии обладают углеродистые и низколегированные стали, эксплуатирующиеся в водных хлоридсодержаших средах, на­пример, водоводы, водопроводы, теплоэнергетическое оборудова­ние.

Щелевая коррозияпроявляется в условиях, когда из-за близости расположения двух поверхностей (то есть в местах застоя раство­ра) возникают узкие зазоры или щели. При этом не имеет большого значения, что явилось причиной образования щели — особенно­сти металлической конструкции или свойства структуры металла. Щелевой коррозии подвержены многие металлы и металлические изделия.

Межкристаллитная коррозия(МКК) возникает в поликристал­лических материалах, преимущественно сплавах железа, алюминия и меди, протекает на границах зерен и является следствием различия химического состава тела зерна и его зернограничных областей.

Межкристаллитной коррозии (МКК) под­вержены легко пассивирующиеся металличе­ские материалы, например, нержавеющие ста­ли, сплавы на основе никеля, алюминий и его сплавы. Причиной МКК является ускоренное растворение металла границ зерен (рис. 5.3). Практически важен случай, когда скорость рас­творения приграничных областей на несколько

порядков величины превышает скорость растворения основного ме­талла. При этом происходит нарушение связи между отдельными зернами металла и их последующее выкрашивание, вследствие ко­торого металлические конструкции теряют свои эксплуатационные свойства.

Селективное вытравливаниехарактерно для конструкционных материалов, состоящих из двух или более фаз, сильно отличающих­ся по своим свойствам, вследствие чего одна из них подвергается преимущественному растворению, тогда как другие растворяются с гораздо более низкими скоростями. Это приводит к образованию в металле полостей различной глубины и конфигурации, вследствие чего металл теряет свою сплошность, а, следовательно, и эксплуа­тационные качества. Характерен этот вид растворения для нержаве­ющих сталей, когда селективному растворению подвергаются выде­ляющиеся по границам их зерен карбиды.

Контактная коррозия развивается при возникновении контакта между двумя или более разнородными металлами.

Контактная коррозияразвивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контакт­ная коррозия может возникать также в случаях, если различие элек­трохимических свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла; или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохими­ческих характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии.

При контактной коррозии на поверхности обеих составляющих системы реализуется компромиссный потенциал, определяемый пересечением суммарных анодной и катодной поляризационных кри­вых. Скорости растворения обеих составляющих системы при этом потенциале будут отличаться от индивидуальных скоростей раство­рения каждой из составляющих в том же растворе.

Если бы раствор электролита обладал бесконечной электропро­водностью, эквипотенциальность поверхности распространялась бы на сколь угодно большое расстояние. В реальных случаях, когда экс­плуатационная среда обладает конечной электропроводностью, эк­випотенциальность будет соблюдаться лишь на части поверхности биметаллической системы, непосредственно прилегающей к месту контакта. По мере удаления от места контакта потенциал каждой из составляющих системы будет все сильнее отклоняться от компро­миссного потенциала, приближаясь к собственному значению. Зона эквипотенциальности тем протяженнее, чем выше электропровод­ность среды. Такое поведение обусловлено наличием в слабоэлек­тропроводной среде омических потерь — 1К погрешности.

Отличительной чертойпроцессов локальной коррозии является поражение ими малых участков поверхности металлических кон­струкций, скорость растворения металла в которых существенно превышает скорость растворения основной доли поверхности. Ско­рость проникновения очагов локальной коррозии в глубь металла может достигать десятков см/год. Большинство процессов локаль­ной коррозии (за исключением селективного растворения и контакт­ной коррозии) носит вероятностный характер. Указанные черты хотя и являются общими, но не раскрывают особенностей механизма ло­кальных коррозионных процессов. Более важны сходства, наблюда­емые при рассмотрении механизма процессов локальной коррозии металлов.

Как правило, все локальные коррозионные процессы протека­ют через несколько последовательно сменяющих друг друга ста­дий, каждой из которых соответствует свой лимитирующий процесс. Основными являются:

• стадия зарождения, соответствующая нарушению равномерно­го протекания коррозии и переходу процесса к стационарному развитию очагов локальной коррозии; стадия имеет достаточ­но высокую продолжительность и называется индукционным периодом тинд;

• стадия устойчивого функционирования очага локальной корро­зии, в течение которой происходит катастрофически быстрое разрушение локально активированных участков металла;

• завершающая стадия развития — залечивание (репассивация) очагов локальной коррозии.

В процессе развития локальных коррозионных процессов часто происходит переход одного вида в другой. Так, например, началь­ной стадией развития язвенной, межкристаллитной и щелевой кор­розии, а также ряда коррозионно-механических повреждений при коррозионно-усталостных процессах или при статической коррозии под напряжением, часто является питтинговая коррозия. Вид корро­зии, подобный питтинговой, развивается а местах несплошности и отслоения покрытий различного типа.

2.14. 2.КОРРОЗИОННО-МЕХАНИЧЕСКИЕ РАЗРУШЕНИЯ МЕТАЛЛОВ.

Металлические конструкции, работающие в условиях одновре­менного воздействия агрессивных сред и механических напряжений, подвергаются более сильному разрушению.

В химической промышленности можно найти многочисленные примеры совместного влияния этих двух факторов.

Процессы синтеза аммиака, мочевины, метилового спирта протекают в агрессивных средах, в условиях повышенных темпе­ратур при движении газового потока под давлением 35-40 МПа.

Дата добавления: 2015-11-04; просмотров: 7561;